Privacy statement: Your privacy is very important to Us. Our company promises not to disclose your personal information to any external company with out your explicit permission.
The center of the InGaAs transistor is a phthalocyanine molecule surrounded by 12 positively charged indium atoms.
On an indium arsenide crystal, 12 positively charged indium atoms surround a phthalocyanine dye molecule, which is the molecular size transistor newly developed by scientists. In accordance with the hard limits of Moore's Law, this is probably the smallest size that a transistor can achieve.
The new transistor was developed by an international team of researchers from the Solid State Electronics Institute at PDI in Germany, the Free University of Berlin in Berlin, the NTT Basic Research Laboratory in Japan, and the U.S. Naval Research Laboratory. This latest result published in the scientific journal Nature and Physics has taken a giant step toward quantum computing.
The diameter of each indium atom that makes up the transistor is 167 picometres (0.167 nanometers), which is 42 times smaller than the current smallest circuit, IBM's recently introduced 7-nanometer chip (7-nanometer transistor). The thickness of human hair is 100,000 nanometers, which is about 600,000 times the size of indium atoms. The diameter of red blood cells is 6000 nanometers, which is 36,000 times of that. Even the width of 2.5 nanometers of DNA chains is 15 times that of indium atoms.
At such atomic scales, electron flow is often difficult to control reliably and electrons can jump out of the transistor, rendering the transistor ineffective. The Guardian website reported on the 21st that the research team used a scanning tunneling electron microscope to place indium atoms in precise positions and control the flow of electrons through the grid. They have unexpectedly discovered that the orientation of the phthalocyanine dye molecules in the center of the transistor is determined by their charge, which means that the new transistor may not be limited to this compared to a simple switch-like state of a conventional transistor.
Studies have shown that it is possible to create transistors that are smaller than any other quantum system by precisely controlling atoms, and to further study how these micro-transistors can be applied to computers and systems with processing power orders of magnitude higher than current levels. Open the door.
Moore's Law states that the number of components that can be accommodated on an integrated circuit will double approximately every 18 months to 24 months, and the performance will also double. The more transistors that are integrated on a chip, the more powerful it is. At present, the latest computer chips have already exceeded the 7-nanometer scale, and it is becoming more and more difficult to achieve even greater miniaturization. Although the single-molecule transistor distance is far from being integrated into the chip, this new research will still contribute to the development of the next-generation computer, the quantum computer. (Reporter Chen Dan)
August 12, 2024
Mail a questo fornitore
August 12, 2024
Privacy statement: Your privacy is very important to Us. Our company promises not to disclose your personal information to any external company with out your explicit permission.
Fill in more information so that we can get in touch with you faster
Privacy statement: Your privacy is very important to Us. Our company promises not to disclose your personal information to any external company with out your explicit permission.